
 

“Program” Section Transcript 

All text unless otherwise specified is © 2002 Konami Computer Entertainment Japan 

Contents 
System Structure ..................................................................................................................................... 2 

Memory Map .......................................................................................................................................... 2 

Script Language ....................................................................................................................................... 3 

Collision System ...................................................................................................................................... 3 

Zone System and Enemy Soldier AI......................................................................................................... 4 

MGS2 Image Drawing System Characteristics ........................................................................................ 4 

The Use of the VRAM and Textures ........................................................................................................ 5 

Image Drawing Sequence ....................................................................................................................... 5 

Image Drawing Processing and Effects ................................................................................................... 6 

Lighting .................................................................................................................................................... 6 

Streaming System ................................................................................................................................... 7 

Tools ........................................................................................................................................................ 7 

Data Management .................................................................................................................................. 8 

 

 

  

1 
 



System Structure 
The MGS2 system is structured as modules which are divided up as follows: 

USER Programs of the player, enemy, soldiers, doors and bottles, effects. 

GAME A group of functions that can be conveniently used for MGS2 and the program 
managing the game progress with system program combinations. 

SYSTEM 

• Script language interpreter library 
• File/streaming system library 
• Collision/zone management library 
• Motion processing library 
• Miscellaneous multipurpose calculation libraries 
• Memory management, execution, unit control libraries 

KERNEL 
• Sound processing library 
• Thread management wrapper library 
• CD/DVD control library 

SCE LIBRARY 
Each USER program is written as a completed part (Actor). Their activation and messages to them 
are controlled mainly by our original script language called the GCL. For job efficiency, tasks are 
divided among the programmers creating each Actor and the Script Unit creating the games by 
placing each actor. 

One characteristic of this system is that when debugging, it constantly measures how long it takes 
for each Actor’s processing. Knowing how long each processing takes allows us to locate which 
program is “heavy”. 

This is written in C language. Inline assembler is used in some areas. The source file is managed by 
CVS, and the compiling is done on Linux. There are 2600 source files (excluding self-generating files), 
totalling more than 1.15 million lines. 

Memory Map 
PlayStation 2 has a memory space of 32MB in its Emotion Engine (EE). Of this, each game can use 
31MB of memory. MGS2 has allocated them as follows: 

4M: Program domain 
7M: Permanent data 
15M: Work area (including model data, etc. loaded in each stage) 
4M: DMA data work for image-drawing 
512K: Streaming work 
512K: Miscellaneous data 

The program is divided up in the permanent portion that is used throughout the game and the non-
permanent portion replaced in each stage. By loading only the program used in that stage only, the 
memory is cut down. 

Permanent data includes data of things used in multiple stages. These include player and weapon 
data. The work area manages the memory internally, while assigned data of each stage and work 
domains of each program. 

The IOP is in charge of sound and CD/DVD access. It functions as a black box that returns data in 
response to commands from the EE. 

  

2 
 



Script Language 
The GCL (Game Command Language) is the script language designed for the development of MGS. It 
is a very versatile language. The contents of the script can be divided up into those for “program 
startup” and “event setting”. 

In MGS, programs other than the system are designed as “parts” that can be started up by the Script 
Unit when putting together a stage. For example, the “player”, “enemy soldier”, “surveillance 
camera” and “door” are all “parts” that can be assigned positions and parameters freely when 
starting up the stage. Individual effects are also treated as parts whose parameters can be adjusted 
freely. 

“Event setting” pertains to orders causing events to happen when the player or enemy steps into or 
out of a predetermined area. For example, “the door will open when the player steps in front of the 
door” is such an order. In other words, a message is sent so that the “parts” programs that have 
already been started up perform their functions. These messages are predetermined. 

Here is an actual example. The portion beginning 
with “chara” is what calls for a “parts” program. 
Such portions are given specific names (“DoorA1” 
in this case). The parameters assigned are the 
name of the door model, position, and rotation 
angle. All of this makes a door show up in a 
certain position in the game. 

The portion beginning with “trap” is what “sets 
an event”. When “SNAKE” enters the area 
designated as “DoorA1_Area” by another tool, 
the execution block beginning with “exec” sends an “open” order to the “DOOR” program called 
“DoorA1”. 

Other situations involve multiple “condition forks” that change what happens depending on the 
circumstance. The entire game is pretty much composed of combinations of these parts and event 
sets. It might be fun to play the game trying to guess what kind of script governs each item position, 
camera behaviour, and individual event you experience. 

Collision System 
In MGS2, there are collision data in addition to model data. Collision data are classified as “walls” 
that are always vertical and as “floors” that include everything else. In addition, each is broken down 
to smaller blocks that allow the slimming down of the subject to be searched in one time. 

Each wall and floor is assigned detailed qualities, such as whether or not the enemy can see through 
it, whether or not bullet marks remain, and sounds of knocks and footsteps. 

Unlike MGS1, MGS2 allows weapon attacks in first person view. This necessitated the addition of 
polygon collision data of the enemy and player. These are searched only when a bullet is fired. 

Collision data include many other things such as the designation of areas in which events occur, 
angle data of the corner view camera, enemy patrol routes, and enemy thought zone data. The 
actual creation task involves a tool, developed by the Program Unit, that allows GUI setting. Mainly, 
the script unit uses this tool. 

Chara DOOR door1 ¥ 
 -kms std_door ¥ 
 -position 9325,0,-5050 
 -rotate 0,2048,0 
 
trap DoorA1_Area SNAKE ¥ 
 -mask ENTER ¥ 
 - exec { 
  mesg DOOR DoorA1 
open 
 } 

3 
 



The behaviour is set with the GCL script, based on the data that have been set. In the stage 
construction of MGS2, the Script Unit first creates with this tool a temporary model with walls and 
floors only. After it is checked that everything seems to work from a gameplay standpoint, the 
designers were asked to create actual models based on the data. 

The wall information in the radar on the upper right is drawn with the use of this collision 
information. If you take a close look, you might notice minor differences from the actual background 
models. 

Zone System and Enemy Soldier AI 
When an enemy on the upper floor spots the player on the lower floor, the enemy takes the nearest 
stairs to the lower level, just like someone who knows the area well. This action that sounds quite 
simple actually involves a lot of thinking. Calculating the shortest distance between two given spots 
requires a lot of time if done the normal way. In MGS, we resolve this problem with something called 
the “zone system”. 

With the “zone system”, you fill up an irregular shape floor 
(Diagram A) with many rectangular zones. Lines along 
which adjacent zones touch each other are recognised as 
data. When it is determined that there are no obstacles 
between zones, this information that one can move 
between these zones is established as a flag. Following this 
procedure, enemy soldiers determine their routes to their 
destination. Since this method has in advance the data of 
whether or not one can move among the given zones, 
calculation time is decreased considerably. 

However, there is a problem. When an area is formed of a 
very complex shape, laying out zones throughout that 
entire area becomes very difficult. If the enemy steps out of the zones, the enemy cannot determine 
the route correctly. When this actually happens, the enemy loses track of where he should go. He 
repeats attempts of changing directions and looks like he is shaking. This phenomenon, often seen 
during development, was given the name “vibrating soldier”. 

In MGS, in addition to the enemy’s normal patrol routes and scouting paths, the player can freely 
change the position of the enemy by choking and dragging him. This is why a flexible route 
determination method is required in MGS. 

MGS2 Image Drawing System Characteristics 
While maintaining the thinking behind the image drawing system of MGS1 on PlayStation, we have 
designed from scratch a PlayStation 2-specific image drawing system for MGS2. 

Model and effect primitives are managed as individual objects in different types depending on what 
kind they are. Each program only renews the objects display position and vertex information. The 
image drawing setup is done all together by the system, leading to an overall increase in 
performance. 

  

Diagram A 

4 
 



The Use of the VRAM and Textures 
The PlayStation 2 comes with a 4MB VRAM which we use as follows for MGS2: 

Frame Buffer: 2MB (1MB X double buffer) 
Z Buffer: 1MB 
Texture Cache: 1MB 

This is quite a simple allocation for a PlayStation 2 game. We also use the texture cache for the 
temporary storage for post effects as well to make efficient use of the limited VRAM. 

In MGS2, textures are compiled as a transferrable data unit for each model (background models can 
reach 1MB, but most models on the average are about 100-500KB in size), only those necessary for 
the object image-drawing in each image drawing phase are transferred. 

Since not all models are drawn on the screen simultaneously, an average of 2 to 3MB of texture 
transferring takes place per frame in the game. However, the total amount of textures read onto the 
memory for each stage can go up to 10MB. 

Image Drawing Sequence 
MGS2 realizes its visuals by preparing the following object types and using them appropriately 
depending on what it wants to express and how. (names are those used internally) 

• Normal Model: This refers to the standard MGS2 model. We sometimes refer to it as the 
single-weight model in contrast with the multi-weight model. Background models with 
prelighting belong to this type. 
Examples: Background model, etc. 

• Multi-Texture Model: This refers to a model to which we can apply 3 textures per polygon. 
The most common combination in MGS2 is the base map, gloss map, and specular 
environmental map. This is also called the single-weight multi-texture. 
Examples: Normal player model, enemy soldier model, etc.  

• Multi-Weight Multi-Texture Model: Multi-weight is a function in which we give one vertex 
the weight of multiple joints. With a normal model in MGS2, 1 polygon is made to work with 
up to 2 matrices. With a multi-weight model, the model is expanded so that 1 vertex is 
applied up to 4 matrices and 1 polygon works with up to 8 matrices for assigning weights. 
Examples: Models with facial skeletons for demos, etc. 

• Shadow and Spotlight Casting Processing: In MGS2, we realize shadows bending along walls 
with shadow mapping. We create a shadow texture from the light source management 
object specific to this purpose. This texture is then mapped onto the specific model onto 
which the shadow is being cast. 

• Shared Model: A special model drawn in large quantities collectively by setting a certain 
number of matrices for a model comprised of few polygons – such as a bullet shell. The level 
of expression is decreased when compared to a normal model. The advantage is that it uses 
very little memory and the image drawing speed is drastically improved. 
Examples: Bullet shell models, sea lice models, etc. 

• Optical Camouflage Model: A model with optical camouflage process as seen in the opening 
of the Tanker Chapter. The screen is once pulled back to the reverse-buffer, and then the 
buffer is distorted and applied. 

• Patch Curved Surface: A function where curved surfaces are drawn by designating 4 
coordinates on quadrilateral surfaces. In MGS2, curved surfaces are drawn with the 
appropriate number of polygons by varying how small the polygons are broken down to, 

5 
 



depending on the distance from the camera, etc. 
Examples: Ocean surface, water surface in buildings etc. 

• Primitive Object: Many effects in MGS2 are created with this function. Lines, polygons and 
3D sprites can be controlled at the vertex level. By performing a sort in packets of ten 
vertices when drawing an image, translucent expression with very little collapsing is made 
possible. 

In the MGS2 system, these objects are registered to the DMA buffer collectively. All the image-
drawing is done in the background in line with the CPU. Each object is processed in different phases 
as seen below, and images are drawn in the following order as well. 

1. Multi-texture model 1 
2. Multi-weight multi-texture model 1 
3. Normal model 
4. Multi-texture model 2 
5. Multi-weight multi-texture model 2 
6. Shadow and spotlight casting processing 
7. Shared model 
8. Optical camouflage model 
9. Patch curved surface 
10. Translucent model and effect primitive 
11. Miscellaneous post 2D effect 
12. Miscellaneous 2D image drawing 

Image Drawing Processing and Effects 
With the advancement from PlayStation to PlayStation 2, the number of polygons and amount of 
texture that can be shown have increased drastically, leading to increased expression capabilities. 
What is highly impressive is the level of freedom of the vector unit (VU0, VU1) of the Emotion Engine 
(EE) along with the incredible fill rate of the graphic synthesizer (GS). The fill rate is actually very 
much higher than the other consoles of the same generation that were released after PlayStation 2, 
making itself a notable strength of this console. 

With MGS2, we use many translucent effects utilizing the fill rate of the GS. This, along with the 
vertex processing capability of the PlayStation 2, allows expressions such as the storm that could not 
be seen in games before. 

In MGS2, we made aggressive use of the VU1, making challenges with special image-drawing 
techniques such as shared models and patch curved surfaces in addition to processes such as 3D 
calculations and clipping. 

Lighting 
As for lighting, we are using a system equivalent to that for MGS1. Background models use 
prelighting, creating in the PlayStation 2 environment each vertex colour from the light source data 
only once. Because of this, when the light is turned off, recalculation is done to make dynamic 
changes. As for characters, we use a simple style of 3 parallel light sources and 1 environmental 
light. 

Since light source information is calculated based on the point light source data used for the 
background prelighting, we have realized lighting that does not differ much from that of the 

6 
 



background. Light source data are set at the point light source. In some places, more than 500 light 
sources are set in 1 stage. 

Streaming System 
Streaming is a technology that allows the playing of large and long data by reading and playing data 
from the CD/DVD in small amounts repeatedly. It is commonly used for movies and voices. As for the 
MGS series, we have been using a unified format of streaming since MGS1 for polygon demos, voice 
data and movies. 

In MGS2, the following kinds of data are dealt with as streaming data along with time information: 

• Sound data 
• MPEG2 movie data 
• Compressed texture data 
• Polygon demo data 
• Text display data (font data) 
• Codec mode facial motion data 

In addition, 2 sets of streaming data can be played simultaneously and independent from each 
other. This is used for enemy soldier radio communication and the YES/NO answers you can give 
during the Codec mode. 

Sound data, demo data, movie data, although internally separated in files by how they are used, 
share the same format. They are classified mainly by the data type combinations inside them. Since 
the amount of voices in MGS2 is enormous, the following data use up the DVD: 

Sound data: approx. 1.2Gbytes (580 minutes), demo data: approx.. 1.7GBytes (170 minutes), movie 
data: 950M (60 minutes). 

This technology was developed originally for Policenauts. This allowed the playing of the PCM-
recorded BGM and dialogue simultaneously and independently. This technology was ported to other 
consoles with the conversion of Policenauts. As for Konami JPN titles, this has been used in the 
Tokimeki Memorial Drama Series. In MGS, this technology has been tuned and made lighter, 
modified for handling multi-purpose data. 

Tools 
Various tools were created internally for the MGS2 project. 

• Collision data creation/editing tool 
• Demo data creation tool 
• GCL script compiler 
• Model conversion tool 
• Facial motion setting tool 
• Motion sound effect setting tool 
• Motion compression setting tool 
• Automatic voice analysis/lip sync creation tool 
• Progress management TODO bulletin board 
• Data management server system linked to the bulletin board 
• Data construction script 
• Streaming creation tool 

Etc. etc. 

7 
 



Since MGS2 was a very large project, the ease of use of these tools had a direct impact on the 
efficiency of tasks. These tools were then modified repeatedly while being used to meet the need of 
those who used them. 

Not all tools ended up meeting everyone’s needs. However, we will most definitely benefit from 
what we learned through their development and use. 

Data Management 
One of our goals with MGS2 was efficient data management. This was because we faced many 
problems when dealing with large data volumes for MGS1. 

The MGS2 data consists of approximately 3,300 models, 53,000 motion patterns including those 
created automatically, and about 10,000 voice patterns. A total of 70 GBytes of data ended up being 
registered on the server. In order to manage all of this efficiently, we constructed a CGI management 
system with a data-upload-type bulletin board basis. 

Each creator registers his/her data through a browser-style interface, and the server handles the 
conversion to a format that can be used in the PlayStation environment. Those who wish to use the 
data will create a downloadable list script for each stage and then use a tool that automatically 
constructs the data according to that script. 

Thanks to this, the server handled data formatting fixes efficiently, preventing most cases of 
accidental rewriting of data. The management of source codes and GCL script is done quite well with 
use of the CVS. 

However, due to the overall increase of data, the overall time for all construction has increased 
greatly. Currently, it takes more than 2 hours to renew and update all MGS2 data and programs. This 
is a pain in the neck especially towards the end of the development cycle, when modification and 
confirmation becomes frequent. 

8 
 


	System Structure
	Memory Map
	Script Language
	Collision System
	Zone System and Enemy Soldier AI
	MGS2 Image Drawing System Characteristics
	The Use of the VRAM and Textures
	Image Drawing Sequence
	Image Drawing Processing and Effects
	Lighting
	Streaming System
	Tools
	Data Management

